
Institut Supérieur de l’Aéronautique et de l’Espace

IN325 Real-Time Programming Languages
Real-Time Specification for Java

Christophe Garion
DMIA – ISAE

Christophe Garion IN325 Real-Time Specification for Java 1/ 77

License CC BY-NC-SA 3.0

This work is licensed under the Creative
Commons
Attribution-NonCommercial-ShareAlike 3.0
Unported license (CC BY-NC-SA 3.0)

You are free to Share (copy, distribute and transmite) and to Remix (adapt) this
work under the following conditions:

Attribution – You must attribute the work in the manner specified
by the author or licensor (but not in any way that suggests that
they endorse you or your use of the work).
Noncommercial – You may not use this work for commercial
purposes.

Share Alike – If you alter, transform, or build upon this work,
you may distribute the resulting work only under the same or
similar license to this one.

See http://creativecommons.org/licenses/by-nc-sa/3.0/.

Christophe Garion IN325 Real-Time Specification for Java 2/ 77

http://creativecommons.org/licenses/by-nc-sa/3.0/

Acknowledgment

Some slides are borrowed from Éric Noulard’s lecture on Real-Time
Programming with Java.

Most of the examples from the RTSJ part are borrowed from Dibble 2008.

Dibble, Peter C. (2008).
Real-Time Java Platform Programming.
2nd edition.
BookSurge Publishing.
http://www.rtsj.org/RTJPP/rtjpp.html.

Christophe Garion IN325 Real-Time Specification for Java 3/ 77

http://www.rtsj.org/RTJPP/rtjpp.html

Materials and lab sessions

All materials for this lecture including:

slides
lab sessions
bibliography

are available on http://www.tofgarion.net/lectures/IN325

For lab sessions, you will use you own SVN repository for the lecture:
https://eduforge.isae.fr/repos/IN325/your.login/RTSJ

Christophe Garion IN325 Real-Time Specification for Java 4/ 77

http://www.tofgarion.net/lectures/IN325
https://eduforge.isae.fr/repos/IN325/your.login/RTSJ

Bibliography I

Gosling, J. et al. (2013).
The Java Language Specification.
Java SE 7 Edition.
Java Series.
Addison-Wesley Professional.
http://docs.oracle.com/javase/specs/jvms/se7/html/
index.html.

Lindholm, T. et al. (2013).
The Java Virtual Machine Specification.
Java SE 7 Edition.
Java Series.
Addison-Wesley Professional.
http://docs.oracle.com/javase/specs/jvms/se7/html/
index.html.

Christophe Garion IN325 Real-Time Specification for Java 5/ 77

http://docs.oracle.com/javase/specs/jvms/se7/html/index.html
http://docs.oracle.com/javase/specs/jvms/se7/html/index.html
http://docs.oracle.com/javase/specs/jvms/se7/html/index.html
http://docs.oracle.com/javase/specs/jvms/se7/html/index.html

Bibliography II

Dibble, Peter C. (2008).
Real-Time Java Platform Programming.
2nd edition.
BookSurge Publishing.
http://www.rtsj.org/RTJPP/rtjpp.html.

Goetz, B. (2006).
Java concurrency in practice.
Addison-Wesley.
http://jcip.net/.

Christophe Garion IN325 Real-Time Specification for Java 6/ 77

http://www.rtsj.org/RTJPP/rtjpp.html
http://jcip.net/

Quote. . .

If Java had true garbage collection, most programs would delete
themselves upon execution.

Robert Sewell

Christophe Garion IN325 Real-Time Specification for Java 7/ 77

Outline

1 - Concurrency in Java
2 - RTSJ: Real-Time Specification for Java

Christophe Garion IN325 Real-Time Specification for Java 8/ 77

Outline of part 1 - Concurrency in Java

1 - Concurrency in Java

1 Threads in Java

2 Java concurrency API

Christophe Garion IN325 Real-Time Specification for Java 9/ 77

Why concurrency? We are speaking about RT!

Do not mix up!
Real-time is not about being fast but being on time.

å on time for some external concurrent event. . .

meet someone else, a rendez-vous
do not miss the train, an absolute deadline,
the mason should finish the house before the painter come, a
dependency constraint
the ABS computer of the car should control the brakes before sliding,
a time latency.

Christophe Garion IN325 Real-Time Specification for Java 10/ 77

Object orientation and concurrency

Object-Orientation (mainly classes, objects and methods) brings questions
on how concurrency should be integrated with OO concepts:

should one process/thread be mapped to exactly one object?
should a thread be an object?
is it possible to call object method concurrently?
should the concurrency concept be builtin the language?

C answer is no, use a thread library (POSIX Thread may be),
C++ initial answer is bo, but latest C++ standard in 2011 changed
that with the addition of std::thread standard library.
Java answer is yes, we will see.
Go language (http://golang.org/) answer is yes: goroutine and
channels.

Could the concurrency construct be orthogonal to the language?
å yes, see OpenMP (http://openmp.org), give high level con-

currency indications as comments (C, C++, Fortran)

Christophe Garion IN325 Real-Time Specification for Java 11/ 77

http://golang.org/
http://openmp.org

Outline of part 1 - Concurrency in Java

1 Threads in Java
Threading API in Java: basics
Communication between threads

2 Java concurrency API

Christophe Garion IN325 Real-Time Specification for Java 12/ 77

Introduction: processes

A process is a set of instructions to execute, a memory space and
eventually other resources (sockets, files, . . .).

Operating systems allows to execute “simultaneously” several processes
and to schedule them.

OS Proc. 1 Local mem.

Proc. 2 Local mem.

Proc. 3 Local mem.

Processes does not normally share memory. They have their own stack and
address space.

Introduction: threads

Thread is an abbreviation of thread of control. We can also speak about
lightweight process.
A thread is executed within a process. It shares memory space with the
other threads of the process.

OS Proc. 1 Local mem.

Proc. 2 Local mem.

JVM

Local mem.

Thread 1 Local var.

Thread 2 Local var.

Outline of part 1 - Concurrency in Java

1 Threads in Java
Threading API in Java: basics
Communication between threads

2 Java concurrency API

Christophe Garion IN325 Real-Time Specification for Java 15/ 77

A small example. . .

Graphical component that displays datas in RT:

Christophe Garion IN325 Real-Time Specification for Java 16/ 77

A small example: which threads?. . .

Application threads:

DataWrapper
gets the data
executed every 10 ms

DVRefresher
refresh the GUI
executed every 100 ms

But also. . .

Swing event thread
threads created by invokeLater

N.B.
javax.swing.Timer should have been used
a MVC with listeners should have been more judicious. . .

Christophe Garion IN325 Real-Time Specification for Java 17/ 77

Separating control from application

Application

« interface »
java.lang.Runnable

run()

Control

java.lang.Thread

+ Thread(t: Runnable)
+ Thread(t: Runnable,

n: String)
+ start()

. . .

Christophe Garion IN325 Real-Time Specification for Java 18/ 77

The Runnable interface

The Runnable interface represents objects whose behavious should be
executed by an active thread.

This interface represents the fonctional part of the thread.

API of Runnable
public void run()

Christophe Garion IN325 Real-Time Specification for Java 19/ 77

The Thread class

The Thread class represents the thread control flow. It implements the
Runnable interface.

(Partial) API of Thread
void start()

boolean isAlive()

void join()

state

time

started

not
started

isAlive() == true

N.B.
You can also extends the Thread class to create an application, but. . .

Christophe Garion IN325 Real-Time Specification for Java 20/ 77

On our example

DataFeeder.java
1 package fr.supaero.dv;
2
3 public class DataFeeder implements Runnable {
4
5 private DataWrapper dw;
6 private long delta;
7 private int fakeTime;
8
9 public DataFeeder(DataWrapper dw_, long delta_) {

10 this.dw = dw_;
11 this.delta = delta_;
12 }
13
14 @Override public void run() {
15 while (true) {
16 this.dw.add(this.fakeTime++, Math.random() * 40);
17
18 try {
19 Thread.sleep(this.delta);
20 } catch (InterruptedException e) {
21 e.printStackTrace();
22 }
23 }
24 }
25 }

On our example

DVRefresher.java
1 public class DVRefresher implements Runnable {
2
3 private DataVisualization dv;
4 private long delta;
5
6 public DVRefresher(DataVisualization dv_, long delta_) {
7 this.dv = dv_;
8 this.delta = delta_;
9 }

10
11 @Override public void run() {
12 while (true) {
13 SwingUtilities.invokeLater(new Runnable() {
14 @Override public void run() {
15 dv.refresh();
16 }
17 });
18
19 try {
20 Thread.sleep(this.delta);
21 } catch (InterruptedException e) {
22 e.printStackTrace();
23 }
24 }
25 }
26 }

Other methods in Thread API

Thread interruption
static void sleep(long time)

static void yield()

Beware, those methods are not synchronized. For instance

while (!condition) {
Thread.sleep(1000);

}

could never end!

Why?
The compiler does not have to refresh the cache or reload values (i.e.
it can read condition only one time!), cf. Gosling et al. 2013.

Other methods in Thread API

Thread state
Thread.State getState()

NEW RUNNABLE WAITING

TERMINATED

TIMED_WAITING

BLOCKED

start()

end of run()

Other methods in Thread API

Threads groups
ThreadGroup getThreadGroup()

int getPriority()

void setPriority(int priority) using
Thread.MIN_PRIORITY and Thread.MAX_PRIORITY

Other methods. . .
void setName(String name)

String getName()

Thread currentThread()

void interrupt()

boolean isInterrupted()

void setDaemon(boolean on)

boolean isDaemon()

Matrices multiplication .

Exercise 1
Use thread to accelerate matrices multiplication (OK, not very original
,).

Christophe Garion IN325 Real-Time Specification for Java 23/ 77

Outline of part 1 - Concurrency in Java

1 Threads in Java
Threading API in Java: basics
Communication between threads

2 Java concurrency API

Christophe Garion IN325 Real-Time Specification for Java 24/ 77

Communication between threads

Information sharing
The Java threads share the same address space inside the JVM and
thus can share objects references and access directly classes features.

Definition (Critical section)
A critical section is a code portion such that it cannot be executed
simultaneously by two threads.

c1: deposit(5) balance == 100 balance == 105

c2: deposit(10) balance == 100 balance == 110

Christophe Garion IN325 Real-Time Specification for Java 25/ 77

Which operations are safe in Java?

Principle (atomicity)
Affectation of variables of primitive types other than double or long is
atomic.

On the other hand, threads can share values and have a local copy of
those values (cf. Gosling et al. 2013).

You do not have any guarantee on the fact that a variable value read from
a thread has taken into account the changes made by another one. . .

Syntax (volatile)
visibility volatile type field;

The volatile keyword can be used to specify that a field should be
“synchronized” at every modification.

Christophe Garion IN325 Real-Time Specification for Java 26/ 77

Hoare monitor

Definition (Hoare monitor)
A Hoare monitor is an object that can be used safely by several threads.

Hoare, C. A. R. (1974).
“Monitors: an operating system structuring concept”.
In: Communications of the ACM 17.10,
Pp. 549–557.

Hoare monitor

Monitors in Java
Java associates to every Object instance a monitor.

Object has several methods associated to this monitor:
void wait(): the current thread waits until another thread calls
the notify or notifyAll methods on this object (+ temporized
versions)
void notify(): awakes a thread waiting on the object monitor
void notifyAll(): awakes the threads waiting on the object
monitor

Hoare monitor

Syntax (synchronized)
synchronized is a Java keyword that can be used:

in a method declaration
public synchronized void deposit(double money)

in a code block for a particular Object instance

synchronized(instance) {
//code

}

Hoare monitor

Definition (synchronized semantics)
only one thread can acquired the lock on an object monitor
when a thread wants to execute a synchronized method or code
block, it must first acquire the lock on the corresponding object
monitor
a thread that cannot acquire a lock awaits for this lock
when finishing the execution of a synchronized method or code
block, the executing thread release the lock on the corresponding
object monitor

The bank account .

Exercise 2
Create a synchronized bank account (again, not very original ,).

Christophe Garion IN325 Real-Time Specification for Java 28/ 77

The wait, notify and notifyAll methods

wait, notify and notifyAll
void wait(): wait for a condition. This method must be used
inside a synchronized block or method.
A thread calling wait must acquire the lock on the corresponding
object monitor (beware of synchronized blocs!). The thread goes
then in WAITING state and releases the lock.
void notify(): notifies a thread awaiting for a condition.
This method must be used inside a synchronized block or method.
The thread must have the lock on the corresponding object
monitor.
You cannot choose the notified thread (cf. JLS)!
void notifyAll(): notifies all threads awaiting for a
condition. This method must be used inside a synchronized block
or method. The thread must have the lock on the corresponding
object monitor.

Christophe Garion IN325 Real-Time Specification for Java 29/ 77

The wait, notify and notifyAll methods

Precisions on wait
when entering in the wait() method, the lock on the object
monitor is released
the lock is acquired just before the end of the wait method
the wait method is overloaded: void wait(long timeout).
This method returns after a length of timeout milliseconds, even
if no notification has been produced
the main difference with the method sleep is that the lock is
released in the case of the wait method
you should always put the wait method in an infinite loop
testing the notification condition

Christophe Garion IN325 Real-Time Specification for Java 29/ 77

Producers/consumers .

Exercise 3
Create a producer/consumer framework with extra requirements.

All complaints for the extra requirements should be addressed to J.
Hugues ,

Christophe Garion IN325 Real-Time Specification for Java 30/ 77

Deprecated methods of Thread API

Deprecated methods
void destroy(): never implemented
void suspend()

void resume()

void stop()

Oracle (2013).
Java Thread Primitive Deprecation.
http : / / docs . oracle . com / javase / 7 / docs / technotes /
guides/concurrency/threadPrimitiveDeprecation.html.

Christophe Garion IN325 Real-Time Specification for Java 31/ 77

http://docs.oracle.com/javase/7/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html
http://docs.oracle.com/javase/7/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html

Outline of part 1 - Concurrency in Java

1 Threads in Java

2 Java concurrency API

Christophe Garion IN325 Real-Time Specification for Java 32/ 77

Concurrency API to Java 1.4

Problems for concurrency
collections (except Vector and Hashtable) are not synchronized
fail-fast mechanism for iterators on collections
instances of wrapper classes (Integer, Double etc.) cannot be
updated atomatically
only lock notion: monitors

Beware particularly on collections that are not synchronized.

How to create synchronized collections
Use static methods from java.util.Collections:

<T> Collection<T> synchronizedCollection(Collection<T> c)

<T> List<T> synchronizedList(List<T> l)

. . .

Christophe Garion IN325 Real-Time Specification for Java 33/ 77

Exercise on collections .

Exercise 4
Use various implementations of collections with threads.

Christophe Garion IN325 Real-Time Specification for Java 34/ 77

New concurrency API from Java 5

java.util.concurrent
synchronized collections
executors: allow to create subsystems with the same
characteristics than threads
synchronizers: semaphores, barriers etc.
timing with nanosecond precision
java.util.concurrent.atomic: types that can be updated
atomically (AtomicBoolean, AtomicInteger, etc.)
java.util.concurrent.locks

Grazi, V. (May 3, 2012).
Java Concurrent Animated.
http://sourceforge.net/projects/javaconcurrenta/.

Christophe Garion IN325 Real-Time Specification for Java 35/ 77

http://sourceforge.net/projects/javaconcurrenta/

Concurrent collections

ConcurrentHashMap
no lock retained during retrieval operations like in synchronized
collections
lock striping
iterators are not fail-safe, but weakly coherent, they do not throw
ConcurrentModificationException

atomic operations: putIfAbsent, remove, replace

Christophe Garion IN325 Real-Time Specification for Java 36/ 77

Concurrent collections

CopyOnWriteArrayList
operations modifying the list use a copy of the list
when iterating on a list, the elements returned are those present
in the list at the iterator’s creation
no fail-safe behaviour of iterators
to be used with list that are not often modified

CopyOnWriteArraySet
idem but for a synchronized Set

Christophe Garion IN325 Real-Time Specification for Java 36/ 77

Concurrent collections

BlockingQueue

Operation Exception Special value Blocks Time Out

Insert add offer put offer
Remove remove poll take poll
Examine element peek

LinkedBlockingQueue, ArrayBlockingQueue: FIFO
PriorityBlockingQueue: with priority using Comparable

SynchronousQueue: handoff, RV mechanism in Ada

BlockingDeque
double ended queue

Christophe Garion IN325 Real-Time Specification for Java 36/ 77

Synchronizers

Principle
Coordinate the control flow of threads using the state of the synchro-
nizer.

A thread arriving on a synchronizer can pass or wait given the
synchronizer’s state.

Christophe Garion IN325 Real-Time Specification for Java 37/ 77

Synchronizers

Latches
All threads arriving on a latch must wait that the latch reaches to its
final state.
When the final state is reached, all threads are “freed”.
When the final state is reached, the state of the latch cannot be changed.

CountDownLatch
use a counter
void await

void countDown()

Christophe Garion IN325 Real-Time Specification for Java 37/ 77

Synchronizers

FutureTask<E>
represents a result of type E that will be computed in the future
implements Runnable
the computation is represented by a Callable<E> instance which
have a method call (a Runnable instance can also be used)
the threads calling the get method are blocked until call returns
the result is returned to all blocked threads

Christophe Garion IN325 Real-Time Specification for Java 37/ 77

Synchronizers

Semaphore
represents an available number of resources
void acquire()

void release()

+ some variants

Can be used for instance to manage a pool of resources.

Christophe Garion IN325 Real-Time Specification for Java 37/ 77

Synchronizers

CyclicBarrier
blocks threads until a certain number of threads have achieved
the barrier
void await()

void reset()

can execute an instance of Runnable when all threads have
achieved the barrier

Exchanger<E>
a barrier in which a data exchange between threads is done

Christophe Garion IN325 Real-Time Specification for Java 37/ 77

Synchronizers

CyclicBarrier
blocks threads until a certain number of threads have achieved
the barrier
void await()

void reset()

can execute an instance of Runnable when all threads have
achieved the barrier

Exchanger<E>
a barrier in which a data exchange between threads is done

Christophe Garion IN325 Real-Time Specification for Java 37/ 77

Executor

Executor
represents an abstraction allowing to execute a task
void execute(Runnable command)

more control than with Thread: execution politics, timing etc.

Implementations: ThreadPoolExecutor,
ScheduledThreadPoolExecutor to be used with factories from the
Executors class.

Christophe Garion IN325 Real-Time Specification for Java 38/ 77

Locks

Lock
allow to avoid the monitor lock problem
void lock()

void lockInterruptibly() throws InterruptedException

void tryLock()

void tryLock(long to, Unit unit)

void unlock()

Implementations
ReentrantLock

ReentrantReadWriteLock

Christophe Garion IN325 Real-Time Specification for Java 39/ 77

Outline of part 2 - RTSJ: Real-Time Specification for Java

2 - RTSJ: Real-Time Specification
for Java

3 Real-Time Specification for Java: getting started

4 Real-time threads and scheduling

5 Asynchronous events

6 Memory management

Christophe Garion IN325 Real-Time Specification for Java 40/ 77

Outline of part 2 - RTSJ: Real-Time Specification for Java

3 Real-Time Specification for Java: getting started

4 Real-time threads and scheduling

5 Asynchronous events

6 Memory management

Christophe Garion IN325 Real-Time Specification for Java 41/ 77

Java SE for real-time?

Problem with Java SE for RT
garbage collection
JIT compiler
dynamic class loading
threads management (e.g. priority inversion)

Christophe Garion IN325 Real-Time Specification for Java 42/ 77

Exercise: priority inversion example .

Develop three classes
a Lock class with a synchronized method acquireLock that
make something for 5s
a AcquireLockRunnable class implementing Runnable whose
run method use the acquireLock method on a Lock object
a DummyRunnable class implementing Runnable whose run
method that make something for 2s

Create a program
create a Lock object l
create a thread t1 using AcquireLockRunnable on l
(MAX_PRIORITY)
create a thread t2 using AcquireLockRunnable on l
(MIN_PRIORITY)
create a thread t3 using DummyRunnable (NORM_PRIORITY)
start t2, wait for 5 ms, then t1, then t3 and wait the 3 threads
to finish

Real-Time Specification for Java

The objective is to define a real-time specification for Java that solve
the previous problems.

The JSR-000001 for a real-time Java specification has been accepted in
1998. Initial PEG (Primary Expert Group) members came from IBM,
Aonix/Ada Core, QNX, Sun Microsystems, Rockwell-Collins, Nortel
Networks Cyberonics.

Version 1.0.1 of RTSJ was released in 2005. Version 1.1 is planned in JSR
282.

JSR 1: Real-time Specification for Java .
http://jcp.org/en/jsr/detail?id=1.

RTSJ .
http://www.rtsj.org/.

JSR 282: RTSJ version 1.1 .
http://jcp.org/en/jsr/detail?id=282.

Christophe Garion IN325 Real-Time Specification for Java 44/ 77

http://jcp.org/en/jsr/detail?id=1
http://www.rtsj.org/
http://jcp.org/en/jsr/detail?id=282

Some RTSJ implementations

Some implementations. . .
reference implementation: http://rtsj.org
SUN/Oracle Java RTS: http://www.oracle.com/technetwork/
java/javase/tech/index-jsp-139921.html, available for
evaluation
aicas JamaicaVM: http://aicas.com/sites/jamaica.html
FijiVM: http://www.fiji-systems.com/ (no news at this
time. . .)

Beware, some “real-time” JVM do not respect the RTSJ, e.g. JRockit
from Oracle (http://www.oracle.com/technetwork/middleware/
jrockit/overview/index-086343.html) which use a predictible GC but
lacks parts of RTSJ.

Christophe Garion IN325 Real-Time Specification for Java 45/ 77

http://rtsj.org
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-139921.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-139921.html
http://aicas.com/sites/jamaica.html
http://www.fiji-systems.com/
http://www.oracle.com/technetwork/middleware/jrockit/overview/index-086343.html
http://www.oracle.com/technetwork/middleware/jrockit/overview/index-086343.html

Uses of RTSJ implementations

Some examples
Eglin Space Surveillance Radar (AN/FPS-85)
Aonix PERC VM for Aegis Weapon System (but not RTSJ!)
latency-critical banking applications
. . .

Christophe Garion IN325 Real-Time Specification for Java 46/ 77

So, what is in RTSJ?

real-time scheduling
advanced memory management
high precision timers
asynchronous events
asynchronous interrupts on threads
no need for GC (like in the JLS ,)

The javax.realtime package
The javax.realtime package contains all classes and interfaces for real-
time (cf. http://www.rtsj.org/specjavadoc/book_index.html).

Christophe Garion IN325 Real-Time Specification for Java 47/ 77

http://www.rtsj.org/specjavadoc/book_index.html

aicas JamaicaVM

We will use aicas JamaicaVM during the lab sessions. JamaicaVM is JVM
that can execute applications written for Java SE 6.

JamaicaVM has been designed for real-time and embedded systems and
proposes:

hard real-time execution guarantees
support the RTSJ 1.0.2
minimal footprint (1MB for VM, compaction of classes, smart linking
etc.)
many supported platforms
fast execution (compilation in C code)
tools

Christophe Garion IN325 Real-Time Specification for Java 48/ 77

JamaicaVM: tools

jamaicac a Java compiler based on Open JDK compiler
jamaicavm a JVM
jamaicabuilder which builds a standalone executable with the
Jamaica VM + application
Jamaica Thread Monitor to monitor real-time behavior of applications

+ support of Eclipse with the Jamaica Eclipse Plugin

In $JAMAICA/doc:

aicas GmbH (2013).
JamaicaVM 6.2 - User Manual.
https : / / www . aicas . com / cms / sites / default / files /
jamaicavm_6.2_manual.pdf.

Christophe Garion IN325 Real-Time Specification for Java 49/ 77

https://www.aicas.com/cms/sites/default/files/jamaicavm_6.2_manual.pdf
https://www.aicas.com/cms/sites/default/files/jamaicavm_6.2_manual.pdf

Verifying your JamaicaVM installation

(See lab session for details)

Verifiying JamaicaVM installation at ISAE
1 verify that the env. var. JAMAICA is correctly defined
2 start the aicas License Provider to verify it can contact aicas server
3 copy the “Hello world” example in Jamaica distribution and

execute it

Christophe Garion IN325 Real-Time Specification for Java 50/ 77

Outline of part 2 - RTSJ: Real-Time Specification for Java

3 Real-Time Specification for Java: getting started

4 Real-time threads and scheduling

5 Asynchronous events

6 Memory management

Christophe Garion IN325 Real-Time Specification for Java 51/ 77

Available threads types

Thread
« interface »
Schedulable

RealTimeThread AsyncEventHandler

NoHeapRealTimeThread BoundAsyncEventHandler

Schedulable
represents objetcs that can be executed by a scheduler
really difficult to implement!

Christophe Garion IN325 Real-Time Specification for Java 52/ 77

Available threads types

Thread
« interface »
Schedulable

RealTimeThread AsyncEventHandler

NoHeapRealTimeThread BoundAsyncEventHandler

RealTimeThread
extends Thread
access to RT services: asynchronous control transfer, memory,
schedulers

Christophe Garion IN325 Real-Time Specification for Java 52/ 77

Available threads types

Thread
« interface »
Schedulable

RealTimeThread AsyncEventHandler

NoHeapRealTimeThread BoundAsyncEventHandler

NoHeapRealTimeThread
extends RealTimeThread
is not allowed to allocate or reference object on heap
can preempt any GC
cf. ScopedMemory et ImmortalMemory

Christophe Garion IN325 Real-Time Specification for Java 52/ 77

Scheduling

{ abstract }
Scheduler

{singleton}
PriorityScheduler

Scheduler
represents a scheduler for instances of Schedulable
implements a feasibility algorithm

Christophe Garion IN325 Real-Time Specification for Java 53/ 77

Scheduling

{ abstract }
Scheduler

{singleton}
PriorityScheduler

PriorityScheduler
the only one defined in the specification
it is a real-time SCHED_FIFO POSIX scheduler
use static PriorityScheduler instance() to obtain it

Christophe Garion IN325 Real-Time Specification for Java 53/ 77

Scheduling parameters

{ abstract }
SchedulingParameters

PriorityParameters

ImportanceParameters

SchedulingParameters

implements only clone

Christophe Garion IN325 Real-Time Specification for Java 54/ 77

Scheduling parameters

{ abstract }
SchedulingParameters

PriorityParameters

ImportanceParameters

PriorityParameters

int getPriority()

void setPriority(int p)

String toString()

Christophe Garion IN325 Real-Time Specification for Java 54/ 77

Scheduling parameters

{ abstract }
SchedulingParameters

PriorityParameters

ImportanceParameters

ImportanceParameters

int getImportance()

void setImportance(int i)

String toString()

Christophe Garion IN325 Real-Time Specification for Java 54/ 77

Exercise: priority inversion .

Use RT classes!
Use now real-time threads with the priority inversion problem and
Jamaica tools set and verify that SCHED_FIFO priorities are respected.

Christophe Garion IN325 Real-Time Specification for Java 55/ 77

Release parameters

{ abstract }
ReleaseParameters

PeriodicParameters AperiodicParameters

SporadicParameters

ReleaseParameters

associate a Schedulable to release characteristics
cost, deadlines
handlers available when cost is too important or the deadline is
missed

Christophe Garion IN325 Real-Time Specification for Java 56/ 77

Release parameters

{ abstract }
ReleaseParameters

PeriodicParameters AperiodicParameters

SporadicParameters

PeriodicParameters

for periodic releases, with an eventual starting delay
in a RealtimeThread instance, use waitForNextPeriod method

Christophe Garion IN325 Real-Time Specification for Java 56/ 77

Release parameters

{ abstract }
ReleaseParameters

PeriodicParameters AperiodicParameters

SporadicParameters

AperiodicParameters

for releases that can be aperiodic
triggered using messages for instance

Christophe Garion IN325 Real-Time Specification for Java 56/ 77

Release parameters

{ abstract }
ReleaseParameters

PeriodicParameters AperiodicParameters

SporadicParameters

SporadicParameters

like aperiodic, but with a minimum time between releases

Christophe Garion IN325 Real-Time Specification for Java 56/ 77

Exercise: flight control system .

Thanks to Éric Noulard & Claire Pagetti for this example.

Navigation Law
(NL)

Navigation Filter
(NF)

Piloting Law
(PL)

Piloting Filter
(PF)

Feedback
Law
(FL)

Feedback
filter
(FF)

Acceleration
position
acquisition
(AP)

Observed
Position
(pos_o)

Required
Position

(pos_c)

Observed
Acceleration
(acc_o)

Required
Acceleration

(acc_c)

Observed
Angle (angle_o)

(acc_i)

(pos_i)

Required
Angle

(angle_c)

order

angle

acceleration

(acc)

position

120 ms 40 ms 10 ms

Christophe Garion IN325 Real-Time Specification for Java 57/ 77

Outline of part 2 - RTSJ: Real-Time Specification for Java

3 Real-Time Specification for Java: getting started

4 Real-time threads and scheduling

5 Asynchronous events
Time triggering
Fault triggering and software event triggering
Deadline and overrun handlers

6 Memory management

Christophe Garion IN325 Real-Time Specification for Java 58/ 77

Why asynchronous events?

When dealing with real-time systems, external events trigger some
processing:

a packet arrives
someone presses a button
a thread misses its deadline
. . .

Asynchronous events are managed in RTSJ via two classes:

AsyncEvent whose instances represent the asynchronous events
AsyncEventHandler whose instances represent the processing of a
particular asynchronous event

Christophe Garion IN325 Real-Time Specification for Java 59/ 77

Async. events: how it basically works

AsyncEvent: basic methods
can be bound to a external trigger for the event
can be bound to a handler for processing
can be fired: increment the fire count for associated handlers and
start any handlers not active

AsyncEventHandler: lifecycle
1 the runtime starts the execution context that will run the event
2 the handler prepares to handle an event
3 the handler invokes its handleAsyncEvent method
4 cleanup processing
5 the runtime stops the execution context and puts it away

Christophe Garion IN325 Real-Time Specification for Java 60/ 77

Different types of async. events

In the following, we will see different types of asynchronous events:

time triggered
fault triggered
software event triggered
deadline miss and overrun triggered

N.B.
In the following, I will sometimes subclass RealtimeThread instead of
creating implementations of Runnable for lack of space ,

Christophe Garion IN325 Real-Time Specification for Java 61/ 77

Outline of part 2 - RTSJ: Real-Time Specification for Java

3 Real-Time Specification for Java: getting started

4 Real-time threads and scheduling

5 Asynchronous events
Time triggering
Fault triggering and software event triggering
Deadline and overrun handlers

6 Memory management

Christophe Garion IN325 Real-Time Specification for Java 62/ 77

Basic class hierarchy for time-triggered events

AsyncEvent

{abstract}
Timer

PeriodicTimer OneShotTimer

Timer
An abstract class for timers. Constructor:
Timer(HighResolutionTime time, Clock clock, AsyncEventHandler handler)

time: the time to fires the event
clock: the reference clock
handler: the handler associated with the timer

Christophe Garion IN325 Real-Time Specification for Java 63/ 77

HighResolutionTime hierarchy

{abstract}
HighResolutionTime

RationalTimeAbsoluteTime RelativeTime

nanosecond accuracy

static void waitForObject(Object t, HighResolutionTime t)
can be used as t.wait(long millis)

RationalTime is deprecated

Christophe Garion IN325 Real-Time Specification for Java 64/ 77

One shot timer

AsyncEvent

{abstract}
Timer

PeriodicTimer OneShotTimer

OneShotTimer

execute the associated handlers handleAsyncEvent method once
at the specified time

Christophe Garion IN325 Real-Time Specification for Java 65/ 77

OneShotTimer: watchdog example

Dog.java

1 import javax.realtime.*;
2
3 public class Dog {
4 static final int TIMEOUT=2000; // 2 seconds
5
6 public static void main(String [] args){
7 double d;
8 long n;
9 AsyncEventHandler handler = new AsyncEventHandler() {

10 public void handleAsyncEvent(){
11 System.err.println("Emergency reset!!!");
12 System.exit(1);
13 }
14 };
15
16 RelativeTime timeout = new RelativeTime(TIMEOUT, 0);
17
18 OneShotTimer dog = new OneShotTimer(
19 timeout, // Watchdog interval
20 handler);

Christophe Garion IN325 Real-Time Specification for Java 66/ 77

OneShotTimer: watchdog example

Dog.java

21 dog.start();
22 while(true){
23 d = java.lang.Math.random();
24 n = (long)(d * TIMEOUT + 400);
25 System.out.println("Running t=" + n);
26 try {
27 Thread.sleep(n);
28 } catch(Exception e){}
29 dog.reschedule(timeout);
30 }
31 }
32 }

Christophe Garion IN325 Real-Time Specification for Java 66/ 77

OneShotTimer: timeout example

OSTimer.java

1 import javax.realtime.*;
2
3 public class OSTimer {
4 static boolean stopLooping = false;
5
6 public static void main(String [] args){
7 AsyncEventHandler handler = new AsyncEventHandler() {
8 public void handleAsyncEvent(){
9 stopLooping = true;

10 }
11 };
12
13 OneShotTimer timer = new OneShotTimer(
14 new RelativeTime(10000, 0),
15 handler);

Christophe Garion IN325 Real-Time Specification for Java 67/ 77

OneShotTimer: timeout example

OSTimer.java

17 timer.start();
18 while(!stopLooping){
19 System.out.println("Running");
20 try {
21 Thread.sleep(1000);
22 } catch(Exception e){}
23 }
24
25 System.exit(0);
26 }
27 }

Christophe Garion IN325 Real-Time Specification for Java 67/ 77

Periodic timer

AsyncEvent

{abstract}
Timer

PeriodicTimer OneShotTimer

PeriodicTimer

execute the associated handlers handleAsyncEvent method
periodically

Christophe Garion IN325 Real-Time Specification for Java 68/ 77

PeriodicTimer: example

PTimer.java

1 import javax.realtime.*;
2
3 public class PTimer {
4 public static void main(String [] args){
5 AsyncEventHandler handler = new AsyncEventHandler() {
6 public void handleAsyncEvent(){
7 System.out.println("tick");
8 }
9 };

10
11 PeriodicTimer timer = new PeriodicTimer(
12 null, // Start now
13 new RelativeTime(1500, 0),
14 handler);

Christophe Garion IN325 Real-Time Specification for Java 69/ 77

PeriodicTimer: example

PTimer.java

16 timer.start();
17 try {
18 Thread.sleep(20000);
19 } catch(Exception e){ }
20
21 timer.removeHandler(handler);
22
23 System.exit(0);
24 }
25 }

Christophe Garion IN325 Real-Time Specification for Java 69/ 77

Outline of part 2 - RTSJ: Real-Time Specification for Java

3 Real-Time Specification for Java: getting started

4 Real-time threads and scheduling

5 Asynchronous events
Time triggering
Fault triggering and software event triggering
Deadline and overrun handlers

6 Memory management

Christophe Garion IN325 Real-Time Specification for Java 70/ 77

Example

FaultEvt.java

1 import javax.realtime.*;
2
3 public class FaultEvt extends RealtimeThread{
4
5 static int maxPriority;
6
7 public FaultEvt(SchedulingParameters sched){
8 super(sched);
9 }

Christophe Garion IN325 Real-Time Specification for Java 71/ 77

Example

FaultEvt.java

11 public void run() {
12 // Create this method’s fault notification
13 AsyncEventHandler handler = new AsyncEventHandler() {
14 public void handleAsyncEvent(){
15 System.err.println("Run method: notified");
16 }
17 };
18 AsyncEvent notify = new AsyncEvent();
19 RealtimeThread thisThread =
20 RealtimeThread.currentRealtimeThread();
21
22 handler.setSchedulingParameters((SchedulingParameters)
23 (new PriorityParameters(maxPriority-3)));
24
25 // Make sure we hear about trouble
26 notify.addHandler(handler);
27 process1(notify);
28 notify.removeHandler(handler);
29 }

Christophe Garion IN325 Real-Time Specification for Java 71/ 77

Example

FaultEvt.java

31 private void process1(AsyncEvent notify){
32 // Create this method’s fault notification
33 AsyncEventHandler p2Handler = new AsyncEventHandler() {
34 public void handleAsyncEvent(){
35 System.err.println("process1 method: notified");
36 }
37 };
38 p2Handler.setSchedulingParameters((SchedulingParameters)
39 (new PriorityParameters(maxPriority-4)));
40 // Make sure we hear about trouble
41 notify.addHandler(p2Handler);
42 process2(notify);
43 notify.removeHandler(p2Handler);
44 }

Christophe Garion IN325 Real-Time Specification for Java 71/ 77

Example

FaultEvt.java

46 private void process2(AsyncEvent notify){
47 //... something bad happened
48 // fire the notification asyncevent.
49 {
50 notify.fire();
51 return;
52 }
53 }

Christophe Garion IN325 Real-Time Specification for Java 71/ 77

Example

FaultEvt.java

56 public static void main(String [] args){
57 maxPriority = PriorityScheduler.getMaxPriority(null);
58 SchedulingParameters sched =
59 (SchedulingParameters)(new PriorityParameters(maxPriority-5));
60 FaultEvt me = new FaultEvt(sched);
61 me.start();
62 try{
63 me.join();
64 } catch (Exception e){};
65 System.exit(0);
66 }
67 }

Christophe Garion IN325 Real-Time Specification for Java 71/ 77

Outline of part 2 - RTSJ: Real-Time Specification for Java

3 Real-Time Specification for Java: getting started

4 Real-time threads and scheduling

5 Asynchronous events
Time triggering
Fault triggering and software event triggering
Deadline and overrun handlers

6 Memory management

Christophe Garion IN325 Real-Time Specification for Java 72/ 77

What happens with deadline misses and overruns?

Of course, this is for periodic threads.

Sch. evt No handler Handler
deadline miss return false from

waitForNextPeriod
deschedule at
next invocation of
waitForNextPeriod

cost overrun deschedule immedi-
ately and reschedule
at next release

deschedule immedi-
ately

Christophe Garion IN325 Real-Time Specification for Java 73/ 77

Process for deadline misses

When the scheduler detects that a thread with a miss handler has missed
its deadline:

1 it makes the thread nonschedulable
2 it fires its miss handler
3 the thread continues its execution until it invokes

waitForNextPeriod

4 the thread will block until its schedulePeriodic method is invoked

Christophe Garion IN325 Real-Time Specification for Java 74/ 77

Example: passive miss handler

PassiveMissHdlr.java

1 import javax.realtime.*;
2
3 /** Demonstrate a passive miss handler */
4 public class PassiveMissHdlr {
5 /** Define the passive AEH for misses */
6 public static class MissHdlr extends AsyncEventHandler {
7 PeriodicThread th; // Reference to the client thread
8
9 public void setThread(PeriodicThread th) {

10 this.th = th;
11 }
12
13 MissHdlr() {
14 super(
15 new PriorityParameters(
16 PriorityScheduler.getMinPriority(null)+11),
17 null, null, null, null, null);
18 }

Example: passive miss handler

PassiveMissHdlr.java

20 public void handleAsyncEvent() {
21 System.out.println("Recovering from a miss");
22 // First interact with whatever is bothered
23 // by us missing the deadline,
24 // <some action>
25 th.schedulePeriodic(); // Let the thread continue
26 }
27 }

Example: passive miss handler

PassiveMissHdlr.java

29 /** Define a simple periodic RT thread */
30 public static class PeriodicThread extends RealtimeThread {
31 volatile double f;
32
33 public PeriodicThread(SchedulingParameters sched,
34 ReleaseParameters release) {
35 super(sched, release);
36 }
37
38 public void run() {
39 final int CYCLES = 15;
40 int bound = 0;
41
42 for (int ctr = 0; ctr < CYCLES; ++ctr) {
43 for (f=0.0; f < bound; f += 1.0); // Use some time
44 bound += 800000;
45 System.out.println("Ding! " + bound);
46 waitForNextPeriod();
47 }
48 }
49 }

Example: passive miss handler

PassiveMissHdlr.java

51 public static void main(String [] args) {
52 // Build parameters for construction of RT thread
53 MissHdlr missHdlr = new MissHdlr();
54 ReleaseParameters release =
55 new PeriodicParameters(
56 new RelativeTime(), // Start at .start()
57 new RelativeTime(1000, 0), // 1 second period
58 null, // cost
59 new RelativeTime(500,0), // deadline=period/2
60 null, // no overrun handler
61 missHdlr); // miss handler
62 SchedulingParameters scheduling = new PriorityParameters(
63 PriorityScheduler.getMinPriority(null)+10);
64
65 PeriodicThread rt= new PeriodicThread(scheduling, release);
66 // Give the miss handler a reference to
67 // the thread it is managing.
68 missHdlr.setThread(rt);
69
70 rt.start(); // Start the periodic thread
71 try {
72 rt.join(); // Wait for the thread to end
73 } catch (InterruptedException e) {
74 // Ignore
75 };
76 }
77 }

Outline of part 2 - RTSJ: Real-Time Specification for Java

3 Real-Time Specification for Java: getting started

4 Real-time threads and scheduling

5 Asynchronous events

6 Memory management

Christophe Garion IN325 Real-Time Specification for Java 76/ 77

Memory management: available types

{abstract}
MemoryArea

{singleton}
HeapMemory

{singleton}
ImmortalMemory

{abstract}
ScopedMemory

ImmortalPhysicalMemory

LTMemory

LTPhysicalMemory

VTMemory

VTPhysicalMemory

MemoryArea
several constructors (size etc.) + useful methods
void executeInArea(Runnable logic): execute the run
methode of logic in this memory area
void enter(): allows a Runnable to enter in this memory area

Christophe Garion IN325 Real-Time Specification for Java 77/ 77

Memory management: available types

{abstract}
MemoryArea

{singleton}
HeapMemory

{singleton}
ImmortalMemory

{abstract}
ScopedMemory

ImmortalPhysicalMemory

LTMemory

LTPhysicalMemory

VTMemory

VTPhysicalMemory

HeapMemory
the “classical” Java heap. It is accessible via this singleton
allows to allocate objects on heap even if the thread does not
have this context

Christophe Garion IN325 Real-Time Specification for Java 77/ 77

Memory management: available types

{abstract}
MemoryArea

{singleton}
HeapMemory

{singleton}
ImmortalMemory

{abstract}
ScopedMemory

ImmortalPhysicalMemory
LTMemory

LTPhysicalMemory

VTMemory

VTPhysicalMemory

ScopedMemory
allows to allocate dynamically
is not garbage collected
objects in this area are finalized when the JVM determines that
the scope in no more used by an active thread

Christophe Garion IN325 Real-Time Specification for Java 77/ 77

Memory management: available types

{abstract}
MemoryArea

{singleton}
HeapMemory

{singleton}
ImmortalMemory

{abstract}
ScopedMemory

ImmortalPhysicalMemory
LTMemory

LTPhysicalMemory

VTMemory

VTPhysicalMemory

Several types of ScopedMemory
LTMemory: the system guarantees that allocation is in linear time
VTMemory: the system does not guarantee linear time for
allocation

Christophe Garion IN325 Real-Time Specification for Java 77/ 77

Memory management: available types

{abstract}
MemoryArea

{singleton}
HeapMemory

{singleton}
ImmortalMemory

{abstract}
ScopedMemory

ImmortalPhysicalMemory

LTMemory

LTPhysicalMemory

VTMemory

VTPhysicalMemory

ImmortalMemory
a special area for RTSJ accessible via this singleton
objects in this area exist while JVM is running
they are accessible from any memory area
it is never garbage collected!

Christophe Garion IN325 Real-Time Specification for Java 77/ 77

Memory management: available types

{abstract}
MemoryArea

{singleton}
HeapMemory

{singleton}
ImmortalMemory

{abstract}
ScopedMemory

ImmortalPhysicalMemory
LTMemory

LTPhysicalMemory

VTMemory

VTPhysicalMemory

Physical memory
allows to specify a physical memory
constructor: physical address, size, type
type: DMA, shared memory etc.

Christophe Garion IN325 Real-Time Specification for Java 77/ 77

	Concurrency in Java
	Threads in Java
	Threading API in Java: basics
	Communication between threads

	Java concurrency API

	RTSJ: Real-Time Specification for Java
	Real-Time Specification for Java: getting started
	Real-time threads and scheduling
	Asynchronous events
	Time triggering
	Fault triggering and software event triggering
	Deadline and overrun handlers

	Memory management

