
Institut Supérieur de l’Aéronautique et de l’Espace

SD314 Outils pour le Big Data
Functional programming in Python

Christophe Garion
DISC – ISAE

Christophe Garion SD314 Outils pour le Big Data 1/ 35

License CC BY-NC-SA 3.0

This work is licensed under the Creative
Commons
Attribution-NonCommercial-ShareAlike 3.0
Unported license (CC BY-NC-SA 3.0)

You are free to Share (copy, distribute and transmite) and to Remix (adapt) this
work under the following conditions:

Attribution – You must attribute the work in the manner specified
by the author or licensor (but not in any way that suggests that
they endorse you or your use of the work).
Noncommercial – You may not use this work for commercial
purposes.

Share Alike – If you alter, transform, or build upon this work,
you may distribute the resulting work only under the same or
similar license to this one.

See http://creativecommons.org/licenses/by-nc-sa/3.0/.

Christophe Garion SD314 Outils pour le Big Data 2/ 35

http://creativecommons.org/licenses/by-nc-sa/3.0/

Outline

1 Python: basic syntax

2 Functional programming

3 Functional programming with Python

Christophe Garion SD314 Outils pour le Big Data 3/ 35

What is Python?

Python is a widely-used programming language whose objective is
simplicity: you can write concisely and efficiently programs. It has a good
standard library and numerous librairies offer good API.

Some of its features (that can also be drawbacks. . .):

multi-paradigm: procedural, object-oriented, functional (+ more via
extension)
extensible
dynamically typed
automatic memory management
mainly intepreted

Python Software Foundation (2015a).
Python.
http://www.python.org.

Christophe Garion SD314 Outils pour le Big Data 4/ 35

https://en.wikipedia.org/wiki/Python_(programming_language)
http://www.python.org

Python’s philosophy: the Zen of Python

Python Software Foundation (2015b).
PEP 20 – The Zen of Python.
https://www.python.org/dev/peps/pep-0020/.

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren’t special enough
to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.

In the face of ambiguity, refuse
the temptation to guess.
There should be one– and preferably
only one –obvious way to do it.
Although that way may not be
obvious at first unless you’re Dutch.
Now is better than never.
Although never is often better than
right now.
If the implementation is hard to
explain, it’s a bad idea.
If the implementation is easy to
explain, it may be a good idea.
Namespaces are one honking great
idea – let’s do more of those!

https://www.python.org/dev/peps/pep-0020/

An simple example

Let us look at one of the most ancien algorithm:

def gcd(i1, i2):
a = i1
b = i2

while a != b:
if a > b:

a = a - b
else:

b = b - a

return a

I1 = int(input("First integer? "))
I2 = int(input("Second integer? "))

print("The GCD of {0} and {1} is {2}".format(I1, I2, gcd(I1, I2)))

Christophe Garion SD314 Outils pour le Big Data 6/ 35

Python is dynamically typed

Python is dynamically typed:

types are attached to values,
not variables
but Python is strongly typed:
you cannot add an integer to a
string for instance

def gcd(i1, i2):
a = i1
b = i2

while a != b:
if a > b:

a = a - b
else:

b = b - a

return a

I1 = int(input("First integer? "))
I2 = int(input("Second integer? "))

print("The GCD of {0} and {1} is {2}".
format(I1, I2, gcd(I1, I2)))

Christophe Garion SD314 Outils pour le Big Data 7/ 35

Python syntax: blocks using tabulations

Blocks in Python are represented
using tabulations (Tab key).

As they are mandatory, the source
code is (should be?) easy to read.

def gcd(i1, i2):
a = i1
b = i2

while a != b:
if a > b:

a = a - b
else:

b = b - a

return a

I1 = int(input("First integer? "))
I2 = int(input("Second integer? "))

print("The GCD of {0} and {1} is {2}".
format(I1, I2, gcd(I1, I2)))

Christophe Garion SD314 Outils pour le Big Data 8/ 35

Python syntax: imperative kernel

The instructions for the imperative
kernel have (more or less) the same
syntax than C/Java.

Beware of the : syntax!

def gcd(i1, i2):
a = i1
b = i2

while a != b:
if a > b:

a = a - b
else:

b = b - a

return a

I1 = int(input("First integer? "))
I2 = int(input("Second integer? "))

print("The GCD of {0} and {1} is {2}".
format(I1, I2, gcd(I1, I2)))

Christophe Garion SD314 Outils pour le Big Data 9/ 35

Python syntax: functions

You can define functions using the
def keyword. Function call has a
classical syntax.

You can define functions inside
functions if you want. . .

def gcd(i1, i2):
a = i1
b = i2

while a != b:
if a > b:

a = a - b
else:

b = b - a

return a

I1 = int(input("First integer? "))
I2 = int(input("Second integer? "))

print("The GCD of {0} and {1} is {2}".
format(I1, I2, gcd(I1, I2)))

Christophe Garion SD314 Outils pour le Big Data 10/ 35

Python syntax: program

Python is historically a scripting
language, you do not need to define
a main function to define a program.

To execute your program, you have
to interpret it:

python3 filename.py

or

ipython3 filename.py

def gcd(i1, i2):
a = i1
b = i2

while a != b:
if a > b:

a = a - b
else:

b = b - a

return a

I1 = int(input("First integer? "))
I2 = int(input("Second integer? "))

print("The GCD of {0} and {1} is {2}".
format(I1, I2, gcd(I1, I2)))

Christophe Garion SD314 Outils pour le Big Data 11/ 35

Python syntax: objects

In Python, everything is an object:
integers, lists, even functions!

You can call a method using the
classical . notation.

For instance:

l = [1, 2, 3]
l.append(4)
print(l)

def gcd(i1, i2):
a = i1
b = i2

while a != b:
if a > b:

a = a - b
else:

b = b - a

return a

I1 = int(input("First integer? "))
I2 = int(input("Second integer? "))

print("The GCD of {0} and {1} is {2}".
format(I1, I2, gcd(I1, I2)))

Christophe Garion SD314 Outils pour le Big Data 12/ 35

Lists, tuples and dictionaries

Lists are mutable sequences:
l1 = []
l2 = list(’abc’)
l3 = [1, 2, 3]
l1.append(l2[0])

You can extract sublists with slices using the [start:end:step] notation:
[1, 2, 3, 4][1:3]
[1, 2, 3, 4][-1:0:-1]
[1, 2, 3, 4][-1::-1]

Tuples are immutable sequences (often needed as keys for instance):
t = (1, 2, 3)
t[0] = 2

Dictionaries are mapping objects:
d = dict()
d[’a1’] = 4
d = { ’a1’: 4, ’a2’: 5}

Christophe Garion SD314 Outils pour le Big Data 13/ 35

Lists, tuples and dictionaries

Lists are mutable sequences:
l1 = []
l2 = list(’abc’)
l3 = [1, 2, 3]
l1.append(l2[0])

You can extract sublists with slices using the [start:end:step] notation:
[1, 2, 3, 4][1:3]
[1, 2, 3, 4][-1:0:-1]
[1, 2, 3, 4][-1::-1]

Tuples are immutable sequences (often needed as keys for instance):
t = (1, 2, 3)
t[0] = 2

Dictionaries are mapping objects:
d = dict()
d[’a1’] = 4
d = { ’a1’: 4, ’a2’: 5}

Christophe Garion SD314 Outils pour le Big Data 13/ 35

Lists, tuples and dictionaries

Lists are mutable sequences:
l1 = []
l2 = list(’abc’)
l3 = [1, 2, 3]
l1.append(l2[0])

You can extract sublists with slices using the [start:end:step] notation:
[1, 2, 3, 4][1:3]
[1, 2, 3, 4][-1:0:-1]
[1, 2, 3, 4][-1::-1]

Tuples are immutable sequences (often needed as keys for instance):
t = (1, 2, 3)
t[0] = 2

Dictionaries are mapping objects:
d = dict()
d[’a1’] = 4
d = { ’a1’: 4, ’a2’: 5}

Christophe Garion SD314 Outils pour le Big Data 13/ 35

Lists, tuples and dictionaries

Lists are mutable sequences:
l1 = []
l2 = list(’abc’)
l3 = [1, 2, 3]
l1.append(l2[0])

You can extract sublists with slices using the [start:end:step] notation:
[1, 2, 3, 4][1:3]
[1, 2, 3, 4][-1:0:-1]
[1, 2, 3, 4][-1::-1]

Tuples are immutable sequences (often needed as keys for instance):
t = (1, 2, 3)
t[0] = 2

Dictionaries are mapping objects:
d = dict()
d[’a1’] = 4
d = { ’a1’: 4, ’a2’: 5}

Christophe Garion SD314 Outils pour le Big Data 13/ 35

The for loop

The for loop instruction works with everything that is iterable.

From lists. . .

for x in [1, 2, 3, 4]:
print(x)

. . . ranges. . .

for x in range(2, 8):
print(x)

. . . to lines of files:

data = open("/etc/passwd")

for line in data:
print(line)

Christophe Garion SD314 Outils pour le Big Data 14/ 35

Outline

1 Python: basic syntax

2 Functional programming

3 Functional programming with Python

Christophe Garion SD314 Outils pour le Big Data 15/ 35

Functional programming: the big picture

Functional programming is a programming style or paradigm based on
evaluation of mathematical functions.

As in mathematics, there are no side-effects and no mutable state.

The foundations of functional programming are nested in lambda calculus,
a mathematical formalism developed in the 30’s to answer Hilbert’s
Entscheidungsproblem.

Christophe Garion SD314 Outils pour le Big Data 16/ 35

https://en.wikipedia.org/wiki/Lambda_calculus

Functional programming: the big picture

Functional programming is a programming style or paradigm based on
evaluation of mathematical functions.

As in mathematics, there are no side-effects and no mutable state.

The foundations of functional programming are nested in lambda calculus,
a mathematical formalism developed in the 30’s to answer Hilbert’s
Entscheidungsproblem.

Christophe Garion SD314 Outils pour le Big Data 16/ 35

https://en.wikipedia.org/wiki/Lambda_calculus

Features of functional programming

Main characteristics of functional programming:

higher-order functions: functions that can take other functions as
parameters or return them as results

Question: can you think of a simple mathematical higher-order
function that you know for a long time?

pure functions: functions that does not have side effects.

An important associated property is referentiel transparency: you
can call a function with the same arguments multiple times, it will
return the same result.
recursion: functions that call themselves for iteration.

Can be optimized via tail-recursion

Christophe Garion SD314 Outils pour le Big Data 17/ 35

https://en.wikipedia.org/wiki/Tail_recursion

Features of functional programming

Main characteristics of functional programming:

higher-order functions: functions that can take other functions as
parameters or return them as results

Question: can you think of a simple mathematical higher-order
function that you know for a long time?
pure functions: functions that does not have side effects.

An important associated property is referentiel transparency: you
can call a function with the same arguments multiple times, it will
return the same result.

recursion: functions that call themselves for iteration.

Can be optimized via tail-recursion

Christophe Garion SD314 Outils pour le Big Data 17/ 35

https://en.wikipedia.org/wiki/Tail_recursion

Features of functional programming

Main characteristics of functional programming:

higher-order functions: functions that can take other functions as
parameters or return them as results

Question: can you think of a simple mathematical higher-order
function that you know for a long time?
pure functions: functions that does not have side effects.

An important associated property is referentiel transparency: you
can call a function with the same arguments multiple times, it will
return the same result.
recursion: functions that call themselves for iteration.

Can be optimized via tail-recursion

Christophe Garion SD314 Outils pour le Big Data 17/ 35

https://en.wikipedia.org/wiki/Tail_recursion

Advantages of functional programming

higher-order functions allow to write more compact code.

For instance, take a sorting function written in Java (without lambda
expressions). How can you pass the comparison method as
parameter? Is it easy to implement?
referential transparency is powerful and allows to:

remove some code if unused
optimize code via memoization for instance
parallelize code
use whatever evaluation strategy you want

Christophe Garion SD314 Outils pour le Big Data 18/ 35

https://en.wikipedia.org/wiki/Memoization

Functional programming languages

There are lots of functional programming languages that have been
developped since the beginning of CS: Lisp, OCaml, Haskell, Erlang,
Clojure. . .

They are powerful, but may be a little bit cryptic for “average”
programmer. For instance, Fibonacci’s function in Haskell:

fibonacci = 0:1:zipWith (+) fibonacci (tail fibonacci)

The main drawback that was claimed against FP languages was efficiency,
as many FP languages use immutable data.
But languages like OCaml or K have excellent execution performances.

Christophe Garion SD314 Outils pour le Big Data 19/ 35

https://en.wikipedia.org/wiki/Common_Lisp
https://en.wikipedia.org/wiki/OCaml
https://en.wikipedia.org/wiki/Haskell_(programming_language)
https://en.wikipedia.org/wiki/Erlang_(programming_language)
https://en.wikipedia.org/wiki/Clojure
https://en.wikipedia.org/wiki/OCaml
https://en.wikipedia.org/wiki/K_(programming_language)

Functional programming languages

There are lots of functional programming languages that have been
developped since the beginning of CS: Lisp, OCaml, Haskell, Erlang,
Clojure. . .

They are powerful, but may be a little bit cryptic for “average”
programmer. For instance, Fibonacci’s function in Haskell:

fibonacci = 0:1:zipWith (+) fibonacci (tail fibonacci)

The main drawback that was claimed against FP languages was efficiency,
as many FP languages use immutable data.
But languages like OCaml or K have excellent execution performances.

Christophe Garion SD314 Outils pour le Big Data 19/ 35

https://en.wikipedia.org/wiki/Common_Lisp
https://en.wikipedia.org/wiki/OCaml
https://en.wikipedia.org/wiki/Haskell_(programming_language)
https://en.wikipedia.org/wiki/Erlang_(programming_language)
https://en.wikipedia.org/wiki/Clojure
https://en.wikipedia.org/wiki/OCaml
https://en.wikipedia.org/wiki/K_(programming_language)

Industrial uses of FP

FP was not really popular in industry, but some successful stories exist:

Erlang has been developed and used at Ericsson for
telecommunications
OCaml is used in finance, compiler implementation and static
verification of programs

Nowadays, FP has regained interest with Big Data problematics.

Christophe Garion SD314 Outils pour le Big Data 20/ 35

Outline

1 Python: basic syntax

2 Functional programming

3 Functional programming with Python

Christophe Garion SD314 Outils pour le Big Data 21/ 35

FP in Python: possible or not?

We will examine FP features and see if it is possible to implement/use
them in Python.

feature in Python
higher-order functions 2
pure functions 2
recursion 2
immutable data 2

First, let us remark that recursion is possible in Python, so that’s one
feature checked ,

Let us look at the other features.

Christophe Garion SD314 Outils pour le Big Data 22/ 35

FP in Python: possible or not?

We will examine FP features and see if it is possible to implement/use
them in Python.

feature in Python
higher-order functions 2
pure functions 2
recursion 42
immutable data 2

First, let us remark that recursion is possible in Python, so that’s one
feature checked ,

Let us look at the other features.

Christophe Garion SD314 Outils pour le Big Data 22/ 35

Higher-order functions

Remember that higher-order functions are functions that accept functions
as parameters or return functions as value.

As everything is an object in Python, even functions, you can pass a
function as argument of another function:

def higher_order(value, function):
return function(value)

def inc_int(i):
return i + 1

def first_char(s):
return s[0]

print(higher_order(2, inc_int))
print(higher_order("hello", first_char))

Christophe Garion SD314 Outils pour le Big Data 23/ 35

Higher-order functions

Remember that higher-order functions are functions that accept functions
as parameters or return functions as value.

As everything is an object in Python, even functions, you can pass a
function as argument of another function:

def higher_order(value, function):
return function(value)

def inc_int(i):
return i + 1

def first_char(s):
return s[0]

print(higher_order(2, inc_int))
print(higher_order("hello", first_char))

Christophe Garion SD314 Outils pour le Big Data 23/ 35

Sorting, again and again. . . .

Exercise
Write a selection_sort function that takes a list to be sorted and a
comparison function.
Test it on several examples.

Christophe Garion SD314 Outils pour le Big Data 24/ 35

Trying partial function application

Let us consider the following code:

def higher_order(value, function):
return function(value)

def multiply_int(i, j):
return i * j

print(higher_order(3, multiply_int)) # ouch

In functional programming languages, this should be possible: the return
of higher_order(3, multiply_int) should be a function that takes
one argument and multiply this argument by 3.

This is call partial function application.

Christophe Garion SD314 Outils pour le Big Data 25/ 35

https://en.wikipedia.org/wiki/Partial_application

Trying partial function application

Let us consider the following code:

def higher_order(value, function):
return function(value)

def multiply_int(i, j):
return i * j

print(higher_order(3, multiply_int)) # ouch

In functional programming languages, this should be possible: the return
of higher_order(3, multiply_int) should be a function that takes
one argument and multiply this argument by 3.

This is call partial function application.

Christophe Garion SD314 Outils pour le Big Data 25/ 35

https://en.wikipedia.org/wiki/Partial_application

The partial function

The functools module offers a partial function that allows to create
partial functions:

from functools import partial

def higher_order(value, function):
return partial(function, value)

def multiply_int(i, j):
return i * j

print(higher_order(3, multiply_int)(4))

Christophe Garion SD314 Outils pour le Big Data 26/ 35

Lambdas

Using the inc_int function in the first example was a little bit fastidious.

We can use instead lambdas, which are anonymous functions:

def higher_order(value, function):
return function(value)

print(higher_order(2,
lambda x: x + 1))

print(higher_order("hello",
lambda x: x[0]))

Lambdas are related to the lambda-calculus, the mathematical foundation
for functional languages.

Beware
Lambdas in Python are limited to an expression.

Christophe Garion SD314 Outils pour le Big Data 27/ 35

https://en.wikipedia.org/wiki/Lambda_calculus

Lambdas

Using the inc_int function in the first example was a little bit fastidious.

We can use instead lambdas, which are anonymous functions:

def higher_order(value, function):
return function(value)

print(higher_order(2,
lambda x: x + 1))

print(higher_order("hello",
lambda x: x[0]))

Lambdas are related to the lambda-calculus, the mathematical foundation
for functional languages.

Beware
Lambdas in Python are limited to an expression.

Christophe Garion SD314 Outils pour le Big Data 27/ 35

https://en.wikipedia.org/wiki/Lambda_calculus

Lambdas

Using the inc_int function in the first example was a little bit fastidious.

We can use instead lambdas, which are anonymous functions:

def higher_order(value, function):
return function(value)

print(higher_order(2,
lambda x: x + 1))

print(higher_order("hello",
lambda x: x[0]))

Lambdas are related to the lambda-calculus, the mathematical foundation
for functional languages.

Beware
Lambdas in Python are limited to an expression.

Christophe Garion SD314 Outils pour le Big Data 27/ 35

https://en.wikipedia.org/wiki/Lambda_calculus

Lambdification of your sort .

Exercise
Call your sort function with some lambdas.

Christophe Garion SD314 Outils pour le Big Data 28/ 35

Map, filter, reduce

There are three “famous” higher-order functions in FP (can be generalized
to other structures than lists):

map is a function that applies a function on each element of a list
and returns the resulting list
filter is a function that takes a function returning a boolean value
(condition) and a list as parameters and returns a list consisting of
the element of the initial list satisfying the condition
reduce or fold (more specifically fold_left here) is a function that
takes a combining function, a list and an initial element and
computes (reduces) the list to a value using the function.
For instance, calling reduce(operator.add, [4, 5, 6], 1)
should produce the following computation:

+

+

+

1 4
5

6

Christophe Garion SD314 Outils pour le Big Data 29/ 35

Map, filter, reduce .

Exercise
Using only recursion (no loops!), write your own version of those three
functions.

Hint: reduce can be used in the other functions. . .

Use reduce to verify if all elements of a list verify a given property.

Use all functions to create a function that returns the sum of the
squared values of each even element of a list.

Christophe Garion SD314 Outils pour le Big Data 29/ 35

The map function

Of course, Python has a built-in map function ,

Beware
What follows on iterators apply on Python 3, not Python 2!

The map function of Python3 returns an iterator, i.e. an object that
implements the next function. This allows to yield elements of the result
when needed and can be used in a loop or to build a list:

obj = map(lambda x: x + 1, [1, 2, 3, 4])

print(type(obj))

for i in obj:
print(i)

print(list(obj)) # what happen here?

Christophe Garion SD314 Outils pour le Big Data 30/ 35

A last exercise on map .

Exercise
Create a function that takes a list of integers and returns a list of partial
functions such that each partial function adds the corresponding integer
to its argument.

Christophe Garion SD314 Outils pour le Big Data 31/ 35

List comprehension

Python recommends to use generators and list comprehensions instead
of map.

For instance, the following map call:

l = [1, 2, 3, 4]
print(map(lambda x: x + 1, l))

is equivalent to

l = [1, 2, 3, 4]
print([(lambda x: x + 1)(i) for i in l])

You can also constraint the comprehension:

l = [1, 2, 3, 4]
print([(lambda x: x + 1)(i) for i in l if i % 2 == 0])

Christophe Garion SD314 Outils pour le Big Data 32/ 35

List comprehension

Python recommends to use generators and list comprehensions instead
of map.

For instance, the following map call:

l = [1, 2, 3, 4]
print(map(lambda x: x + 1, l))

is equivalent to

l = [1, 2, 3, 4]
print([(lambda x: x + 1)(i) for i in l])

You can also constraint the comprehension:

l = [1, 2, 3, 4]
print([(lambda x: x + 1)(i) for i in l if i % 2 == 0])

Christophe Garion SD314 Outils pour le Big Data 32/ 35

The filter and reduce functions

Of course (again), Python has a built-in filter function ,

l = [1, 2, 3, 4]

for i in filter(lambda x: x % 2 == 0, l):
print(i)

And the poor reduce function has been exiled in the functools module:

from functools import reduce

l = [1, 2, 3, 4]
print(reduce(lambda x, y: x + y, l, 0))

Christophe Garion SD314 Outils pour le Big Data 33/ 35

The filter and reduce functions

Of course (again), Python has a built-in filter function ,

l = [1, 2, 3, 4]

for i in filter(lambda x: x % 2 == 0, l):
print(i)

And the poor reduce function has been exiled in the functools module:

from functools import reduce

l = [1, 2, 3, 4]
print(reduce(lambda x, y: x + y, l, 0))

Christophe Garion SD314 Outils pour le Big Data 33/ 35

OK, let’s check

feature in Python
higher-order functions 42
pure functions 2
recursion 42
immutable data 2

So, you have to verify if we can write pure functions and use immutable
data.

Christophe Garion SD314 Outils pour le Big Data 34/ 35

Pure functions and immutable data

For pure functions, use only local code. Do not use global variables and
assignements.

If you respect this rule, everything’s gonna be allright.

For immutable data, you may use tuples, but a simple
solution would be to return new lists for instance.

Christophe Garion SD314 Outils pour le Big Data 35/ 35

Pure functions and immutable data

For pure functions, use only local code. Do not use global variables and
assignements.

If you respect this rule, everything’s gonna be allright.

For immutable data, you may use tuples, but a simple
solution would be to return new lists for instance.

Christophe Garion SD314 Outils pour le Big Data 35/ 35

Pure functions and immutable data

For pure functions, use only local code. Do not use global variables and
assignements.

If you respect this rule, everything’s gonna be allright.

For immutable data, you may use tuples, but a simple
solution would be to return new lists for instance.

Christophe Garion SD314 Outils pour le Big Data 35/ 35

	Python: basic syntax
	Functional programming
	Functional programming with Python

